skip to main content


Search for: All records

Creators/Authors contains: "Tzortziou, Maria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study evaluated water quality, nitrogen (N), and phytoplankton assemblage linkages along the western Long Island Sound (USA) shoreline (Nov. 2020 – Dec. 2021) following COVID-19 stay-in-place (SIP) orders through monthly surveys and N-addition bioassays. Ammonia-N (AmN; NH3+NH4+) negatively correlated with total chlorophyll-a (chl-a) at all sites; this was significant at Alley Creek, adjacent to urban wastewater inputs, and at Calf Pasture, by the Norwalk River (Spearman rank correlation, p<0.01 and 0.02). Diatoms were abundant throughout the study, though dinoflagellates (Heterocapsa, Prorocentrum), euglenoids/cryptophytes, and both nano- and picoplankton biomass increased during summer. In field and experimental assessments, high nitrite+nitrate (N+N) and low AmN increased diatom abundances while AmN was positively linked to cryptophyte concentrations. Likely N+N decreases with presumably minimal changes in AmN and organic N during COVID-19 SIP resulted in phytoplankton assemblage shifts (decreased diatoms, increased euglenoids/cryptophytes), highlighting the ecological impacts of N-form delivered by wastewater to urban estuaries. 
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  2. Free, publicly-accessible full text available October 1, 2024
  3. Free, publicly-accessible full text available October 1, 2024
  4. Key Points Total organic carbon export out of the delta to the ocean from April to September 2019 was 1.5 Tg C, 65% of which was dissolved organic carbon 50% and 25% of the total delta export of dissolved and particulate organic carbon crossed the 10 m isobath into the coastal ocean The breakdown of riverine organic matter increases light for phytoplankton growth in the surface ocean 100 s of kilometers into the ocean 
    more » « less
  5. Arctic landscapes are warming and becoming wetter due to changes in precipitation and the timing of snowmelt which consequently alters seasonal runoff and river discharge patterns. These changes in hydrology lead to increased mobilization and transport of terrestrial dissolved organic matter (DOM) to Arctic coastal seas where significant impacts on biogeochemical cycling can occur. Here, we present measurements of dissolved organic carbon (DOC) and chromophoric DOM (CDOM) in the Yukon River-to-Bering Sea system and two river plumes on the Alaska North Slope which flow into the Beaufort Sea. Our sampling characterized optical and biogeochemical properties of DOM during high and low river discharge periods for the Yukon River-Bering Sea system. The average DOC concentration at the multiple Yukon River mouths ranged from a high of 10.36 mg C L -1 during the ascending limb of the 2019 freshet (late May), 6.4 mg C L -1 during the descending limb of the 2019 freshet (late June), and a low of 3.86 mg C L -1 during low river discharge in August 2018. CDOM absorption coefficient at 412 nm ( a CDOM (412)) averaged 8.23 m -1 , 5.07 m -1 , and 1.9 m -1 , respectively. Several approaches to model DOC concentration based on its relationship with CDOM properties demonstrated cross-system seasonal and spatial robustness for these Arctic coastal systems despite spanning an order of magnitude decrease in DOC concentration from the lower Yukon River to the Northern Bering Sea as well as the North Slope systems. “Snapshot” fluxes of DOC and CDOM across the Yukon River Delta to Norton Sound were calculated from our measurements and modeled water fluxes forced with upstream USGS river gauge data. Our findings suggest that during high river flow, DOM reaches the delta largely unaltered by inputs or physical and biogeochemical processing and that the transformations of Yukon River DOM largely occur in the plume. However, during low summer discharge, multiple processes including local precipitation events, microbial decomposition, photochemistry, and likely others can alter the DOM properties within the lower Yukon River and Delta prior to flowing into Norton Sound. 
    more » « less
  6. Abstract

    Tidal wetlands are a significant source of dissolved organic matter (DOM) to coastal ecosystems, which impacts nutrient cycling, light exposure, carbon dynamics, phytoplankton activity, microbial growth, and ecosystem productivity. There is a wide variety of research on the properties and sources of DOM; however, little is known about the characteristics and degradation of DOM specifically sourced from tidal wetland plants. By conducting microbial and combined UV exposure and microbial incubation experiments of leachates from fresh and senescent plants in Chesapeake Bay wetlands, it was demonstrated that senescent material leached more dissolved organic carbon (DOC) than fresh material (77.9 ± 54.3 vs 21.6 ± 11.8 mg DOC L−1, respectively). Degradation followed an exponential decay pattern, and the senescent material averaged 50.5 ± 9.45% biodegradable DOC (%BDOC), or the loss of DOC due to microbial degradation. In comparison, the fresh material averaged a greater %BDOC (72.6 ± 19.2%). Percent remaining of absorbance (83.3 ± 26.7% for fresh, 90.1 ± 10.8% for senescent) was greater than percent remaining DOC, indicating that colored DOM is less bioavailable than non-colored material. Concentrations of DOC leached, %BDOC, and SUVA280 varied between species, indicating that the species composition of the marsh likely impacts the quantity and quality of exported DOC. Comparing the UV + microbial to the microbial only incubations did not reveal any clear effects on %BDOC but UV exposure enhanced loss of absorbance during subsequent dark incubation. These results demonstrate the impacts of senescence on the quality and concentration of DOM leached from tidal wetland plants, and that microbes combined with UV impact the degradation of this DOM differently from microbes alone.

     
    more » « less
  7. Free, publicly-accessible full text available May 1, 2024
  8. Water quality measures for inland and coastal waters are available as discrete samples from professional and volunteer water quality monitoring programs and higher-frequency, near-continuous data from automated in situ sensors. Water quality parameters also are estimated from model outputs and remote sensing. The integration of these data, via data assimilation, can result in a more holistic characterization of these highly dynamic ecosystems, and consequently improve water resource management. It is becoming common to see combinations of these data applied to answer relevant scientific questions. Yet, methods for scaling water quality data across regions and beyond, to provide actionable knowledge for stakeholders, have emerged only recently, particularly with the availability of satellite data now providing global coverage at high spatial resolution. In this paper, data sources and existing data integration frameworks are reviewed to give an overview of the present status and identify the gaps in existing frameworks. We propose an integration framework to provide information to user communities through the the Group on Earth Observations (GEO) AquaWatch Initiative. This aims to develop and build the global capacity and utility of water quality data, products, and information to support equitable and inclusive access for water resource management, policy and decision making. 
    more » « less